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Introduction 

A key limiting factor in organising and using information from global NH specimens is making that 
information computable. More than 95% of available information currently resides on labels 
attached to specimens or in physical registers. Institutional digitisation pipelines have tended to 
focus more on the specimens themselves than on efficiently capturing computable data about them. 
SYNTHESYS+ will address this gap using technologies developed to harvest, organise, analyse and 
enhance information from other sources (such as books, photographs and maps), offering the 
prospect of greatly accelerated data capture.  

 
The objective of the Specimen Data Refinery (SDR) is to combine these technologies into a cloud-
based platform for processing specimen images and their labels en masse in order to extract 
essential data efficiently and according to standard best practices.  

 
A workflow was developed to illustrate the various steps required to fully automate the process 
from image capture to a full specimen dataset (Image 1). There are two core components of building 
a workflow that must be considered. First, the tools available to complete the individual tasks 
required, such as tools that can execute image segmentation or tools that can conduct automated 
text extraction. Research and development has been conducted to varying degrees on tools and 
methods for executing these steps. Most of this research and development has been conducted in 
isolation, addressing one step in the process but not the workflow in its entirety. In developing a 
Specimen Data Refinery, there are opportunities to take advantage of pre-existing research and 
development on some tools, but it will also encounter significant gaps in others.  
 
 
 

Image 1: Specimen Data Refinery Workflow 
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The second component of building an automated workflow is developing the links between each 
tool - the environment in which the entire process is executed and the technology that executes the 
process. This is a different set of platforms and services that will connect what are currently various 
disparate pieces into a whole working system. It requires a technology stack that is reliable, 
sustainable and cost-effective. 
 
In order to assess the state of each phase in the workflow, a gap analysis on available tools for each 
step was conducted to discover where a Specimen Data Refinery might readily move forward and 
where considerable hurdles can be expected (Section 3). Then an initial assessment was conducted 
on the technology stack required to assemble these tools together into an automated workflow 
(Section 4). 
 

1.1 Scope 
The scope of this initial landscape analysis (Task 8.1) is to evaluate existing platforms based on their 
approach and service offering and to identify sources of data including reference/ground 
truth/training datasets. It will also identify any missing tools/service and datasets. 
 
This report does not include: evaluation of existing tools, service registries and platform-based 
approaches; assessment for the potential to use pan-European Collaborative Data Infrastructure; 
creation of reference/ground truth/training datasets. This is planned in the subsequent follow-on 
Task 8.2. 
 

1.1.1 Machine Learning and Training Data Sets 

The tools in this landscape analysis include both unsupervised and supervised math-based and 
machine learning resources. For example, the image segmentation tools are unsupervised math-
based whereby their methods for identifying parts of an image include thresholding, contouring, 
clustering, etc and how it segments an image does not change no matter the number of images 
processed. In comparison, Google Vision uses supervised learning, requiring a ‘training period’  for 
image recognition when it is ‘taught’ to identify specific items in an image based on a ground-truth 
set of images. The more images it processes, the more accurate its recognition capabilities should 
become. 
 
Many of the machine learning tools included in this study are specific to natural history collections 
and, in many cases, are designed for specific taxons. Thus these tools have been trained and tested 
with species datasets. In order to gain a comprehensive picture of the tools available, items have 
also been included that were not designed specifically for scientific collections and have undergone 
limited or no testing on natural history collections.  
 
It was not within the scope of this deliverable to develop new training data sets but, in identifying 
tools that have not been tested in a natural history context, to identify where the development of 
new training datasets needs to be prioritized. 
 

1.1.2 Prior Research on Automation 

A collection of research has already been conducted in the SYNTHESYS3 and ICEDIG projects on the 
capabilities of automation tools in digitisation. Haston et al. (2015) conducted a series of tests on 
image segmentation, OCR and handwriting recognition and natural language processing (NLP) for 
automatic metadata capture. Further research has also been conducted in ICEDIG on label and 
transcription automation capabilities. Tests were conducted on methods for automated text 
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digitisation for ICEDIG with recommendations on specific workflows and OCR tools (Owen et al., 
2018).   
 

1.1.3 Crowdsourcing and Human-in-the-Loop 

As the Specimen Data Refinery is intended to integrate both artificial intelligence (AI) and human-in-
the-loop (HitL) approaches to extraction and annotation, citizen science platforms such as plant 
identification apps and volunteer transcription services were included in the initial research. 
However, the primary focus of this landscape analysis is on AI platforms as these hold the greatest 
potential for mass efficiency gains and centralised workflows.  
 
 

 

Methodology 

In order to collect an aggregated list, the SYNTHESYS+ partners from partner institutions were 
invited to contribute known tools, methods, resources and pilot projects [see supplementary file]. 
Over the course of six months, various people added to the list, made updates, cited sources and 
contributed new tools. Each tool was categorised based on their place in the data refinery workflow. 
 
Where available, the data added for each tool included: 

• Brief service description 

• Delivery platform (eg. web application, software library, R package, etc.) 

• Associated academic papers 

• Known test pilots 

• Cost (where applicable) 

• Input/Output formats 

• License 

 
In total, 76 tools, methods and resources were collected (Appendix). 

 
After the aggregation phase was complete, the list was reviewed in its entirety. Each tool and 
resource was mapped onto the data refinery workflow in order to assess where reusable resources 
are available and where there are major gaps or potential risks. Each step in the workflow was 
graded according to a traffic-light system - green for the existence of a variety of resources that 
could be repurposed, amber for the existence of resources with limited reuse potential, and red for 
a major gap where either no resource exists or there is no reuse potential. A number of steps in the 
workflow (identifier verification, trait extraction, transform and analytics) had no associated tools 
submitted and were marked as grey in the workflow map. The workflow map was then distributed 
to the contributing partners to identify any further gaps or missing areas. 

 
Upon completion of the gap analysis, an initial assessment was conducted on the technology stack 
available to compile each of the tools together into a workflow. A high-level consultation was 
conducted with a computer science team at a partner institution with prior experience developing 
similar complex human-in-the-loop workflows. Their recommendations have been documented for 
further study and research in the next phase. 
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Gap Analysis on Tools & Services 

This analysis revealed that there are some areas where considerable efforts have been put towards 
developing a toolkit while others have received less efforts (Image 2). 
 

3.1 Image Segmentation (green) 
Image segmentation involves dividing an image into its component parts, such as separating the 
specimen itself from the barcode and the label. This crucial step allows for deeper analysis into each 
component piece. In addition to a large suite of tools available for batch photo editing (cropping, 
resizing, rotating, etc.), there were three reported tools that could segment an image. scikit-image 
(Pandey, 2019) is a Python package with a suite of methods for segmenting an image including 
thresholding, active contouring, random walkers, etc. ImageSURF is a JAVA API and FIJI plugin that 
segments based on nearest-neighbour colour annotations. OpenCV, an open source computer vision 
and machine learning software library, provides algorithms to segment images for different 
programming languages, which is also a useful tool for image recognition, can segment images as 
well. 
 
Semantic segmentation is another method of image segmentation that is currently being developed 
and tested on herbarium collections. YOLO V3 has been tested for identifying between the different 
items that are commonly found on a herbarium sheets - the plant specimen, scale bar, stamp, color 
pallet, specimen label, envelope and bar-code (Triki et al., forthcoming). Semantic segmentation was 
also used in another study based on a dataset of 400 images of ferns to train a deep learning 
algorithm to segment the image of the specimen from the image background (White et al., 2019). 
These approaches could be adapted and reused for general herbarium sheets and generalised for 
use with other specimen images. 
 
 

Image 2: Traffic-light results of gap analysis 
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The step was marked as green because there is more than one tool available and each tool provides 
a different method for going about image segmentation, thus offering a variety of options that could 
be tested based on the needs of the collection’s images. More importantly, scikit-image underwent 
significant testing by the Natural History Museum as part of the SYNTHESYS3 work package (Haston 
et al., 2015) and YOLO V3 has been trained on natural history collections by a group of universities 
and returned accurate results (Triki et al., forthcoming).  
 

3.2 Feature Analysis (red), Colour Analysis (amber) and Image Recognition 

(green) 
In the aggregation process, many tools were listed as feature analysis resources but were ultimately 
categorised as species identification tools because they used some level of feature analysis to 
identify a specimen (primarily plants). The only tool used exclusively for feature analysis was 
Computer Vision which segments the specimen from the background of the image by identifying its 
edges and then, for butterflies and moths only, takes measurements of the wings. Feature analysis 
was marked red because only one tool was available and it is used for primarily only one type of 
specimen.  
 
Colour analysis was categorised as amber because there is only one tool available. Image Quality 
Assessment, in addition to predicting the technical quality of the image, can group sets of images 
together based on similar colours. However, other tools used for image segmentation and 
recognition, like scikit-image, may be used for this. 
 
Image recognition was categorised as green because there are two well-developed and heavily-
supported resources available. Google Vision comes with enterprise-level support and longevity and 
offers toolkits for both non-coders and programmers. OpenCV has a strong open-source 
development infrastructure underneath it. Both can be trained to recognise items in an image and 
organise them into pre-set categories.  
 

3.3 Condition Checking (red), Image Trait Extraction (red) and Species 

Identification (amber) 
No tools or resources were submitted for condition checking and this appears to be a major gap in 
the workflow. 
 
A majority of the image trait extraction tools and resources developed have been for 
biomedical/epidemiological purposes. Trait extraction was marked as red because only two tools 
were submitted and both are applicable only to plants. Plant Trait Extraction is capable of 
phenotypic trait extraction but only for a subset of collections (Jin et al., 2018) and traitEx can take 
measurements but only of leaves (Gaikwad, 2019). 
 
Species identification, in contrast, has received a tremendous amount of concerted effort, research 
and R&D. As a result, numerous tools and methods have been developed spanning the range of 
neural network machine learning tools (Wu et al., 2007) to citizen science photo apps. However, it 
was still marked as amber because a majority of those submitted are either methods that have only 
been discussed in research papers (Novotny, 2013; Jamil et al., 2015; Munisami, 2015; Şekeroğlu, 
2016; Lasseck, 2017; Xi et al., 2019) or apps for which data and machine learning quality require 
further analysis. Three out of the remaining four existing tools are related only to plant 

https://www.sciencedirect.com/science/article/pii/S1877050916326254#!
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identification. So while there is a strong foundation of methodologies from which to build on, 
species identification will still require considerable input. 

 

3.4 Handwriting Recognition (amber) and OCR (green) 
These two areas have also been the recipients of considerable research and development. While 
Transkribus is the only listed tool available for handwritten text transcription, it is supported by EU 
funding and has been successfully deployed on a collection of specimens from the Natural History 
Museum Edinburgh. Transkribus also offers a host of web and cloud services. 
 
OCR was marked green as there are multiple tools available, although ABBY is an enterprise-level 
software that will likely have cost associated. The Natural History Museum has tested Tesseract OCR 
against the Biodiversity Heritage Library (BHL) corpus and achieved comparable results to BHL's OCR 
engine (powered by ABBYY FineReader). While Tesseract is also capable of handwritten text 
recognition, accuracy with serif and cursive text was poor. Tesseract OCR has been tested in large 
scale on the herbarium sheet images in EUDAT pilot Herbadrop project. Google Vision also provides 
OCR services. Several other tools, including langid.py and Stanford NER were tested as part of the 
ICEDIG work package (Owen et al., 2018).  

 

3.5 Atomization, validation and classification (amber) 
Many OCR tools are capable of named entity recognition or the ability to extract strings of text and 
thereby break a label into its component parts such as designate between place names, person 
names or taxon names. The main tools - NLTK, spaCy and Stanford NER - are capable of deep 
learning so can be trained to recognise specific strings and categories by being trained with a ground 
truth dataset. These tools have been used to derive structured data from taxonomic publications 
(e.g. traits) but still require further research in the context of natural history collection labels. There 
are also a couple of tools available for extracting ecologically-relevant terms from a label. ClearEarth 
and Taxon Concepts are both capable of identifying such terms and categorising.  
 
There are also several language detection tools available. However, there is still considerable work 
to be done on a more efficient method for segmenting out the different identifiers on a label for 
further classification. 
 

3.6 Geographic Resolution (red), Person Resolution (amber) and Taxonomic 

Resolution (green) 
Geographic resolution is a task natural history collections have struggled to automate. There are 
numerous tools available for general geocoding - MapQuest Geocoding, Google Geocoding, CartoDB, 
Pelias. However, these tools require a known address, city, country or region name in order to 
identify an associated latitude and longitude. They are not designed for historical place names and 
cannot accommodate changing boundaries over time or vague or general place descriptions. 
GEOLocate is the only tool listed that is designed specifically to assist in the geographic resolution of 
natural history collections that is currently still active. Several other tools like BioGeomancer 
(Guralnick, 2006) and R packages like R BIOgeo and R GeoNames have also been developed but are 
outdated and no longer unavailable. In the case of BioGeomancer, the code has not been active 
since 2012. Further research and resources will be necessary to develop this part of the workflow. 
 
Person resolution was marked as amber because Bloodhound is currently the only tool designed 
specifically to match a collector with the specimens they collected. Numerous efforts are also 
underway to assign unique person identifiers to researchers, present-day and historical. ORCID, ISNI 
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and ResearcherID have databases of person identification numbers and VIAF combines the person 
with numerous countries’ national libraries into an aggregated database. In relation to published 
academic papers, Elsevier assigns a researcher ID for all authors in its database through Scopus and 
there are a number of sites to which researchers can upload their publishing profile.  
 
MNHN is currently developing a Person Refinery, expected to be completed by April 2020 which has 
revealed a number of challenges in efficiently developing data structures and alignments for person 
resolution, chief of which is how the various researcher ID systems can help disambiguate people 
collections and whether there is particular people identifier system which will prove to be most 
relevant for all types of collections 
 
Taxonomic resolution is the most developed. The Catalogue of Life is an authoritative global species 
checklist for all life on earth, that is built on 172 global taxonomic resources (Catalogue of Life, 2019 
Annual Checklist). GBIF has aggregated the taxonomic databases of numerous sources, taking the 
Catalogue of Life as a starting point, for a single entry-point for taxonomic synonym identification 
and name resolution for living specimens. The NHM has developed a java-based ETL process that 
utilises the GBIF taxonomic backbone to resolve names, while still allowing colleagues with 
taxonomic expertise to validate results and adjust certain query parameters. The Netherlands 
Biodiversity Data Services developed and maintained by Naturalis Biodiversity Center is making use 
of the Catalogue of Life in addition to the Netherlands Species Register to validate names of 
biological collections. GBIF and the Catalogue of Life are constructing a joint infrastructure for names 
and taxonomy, that will include an extended Catalogue of Life as the replacement of the GBIF 
Backbone Taxonomy. In addition to this resource, Fossilworks is available as a taxonomic database 
for historic specimens and there are numerous other databases available specifically for plants, 
mammals or other taxons for further identification. In addition to these databases, there are also a 
number of out-of-the-box tools for synonym identification and resolution. Taxize is an R package 
developed specifically for this purpose (Chamberlain & Szöcs, 2013) as well as Taxosaurus, a 
thesaurus for taxonomy names, along with several other resources. 
 
Taxonomic resolution is marked green as there are several tools and resources available. However 
many of the data sources such as NCBI and ITS offer different classifications and levels of scientific 
name resolution resulting in a scattered and blurry landscape for users. When these services are 
combined in platforms like GBIF, these differences are not currently resolved and it is up to users to 
do so. Work is underway to develop a joint infrastructure, but these discrepancies should be kept in 
mind in the meantime. 
 

3.7 Label (Biological) Trait Extraction (amber) 
Biological trait extraction has been largely confined to literature (Endara et al., 2018; Gaikwad et al., 
2019; Jin et al., 2018; Thessen et al., 2018). However, while infrequent, a small number of specimen 
labels may include trait descriptions. There has been a considerable amount of research and 
development on semantic machine-learning software for extracting trait descriptions for large 
sources of text, some of which may be applied to label text. This category has been marked amber 
because of three tools specific to ecological/biodiversity terms that may be utilised or repurposed 
for specimen labels. ClearEarth (Thessen et al., 2018) and Explorer of Taxon Concepts (Endara et al., 
2018) can extract ecologically-relevant terms from text for further study. Phenoscrape and the 
associated SCATE project connect trait analysis tools to semantic reasoning tools. 
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Building a Workflow 

The Specimen Data Refinery (SDR) aims to take the tools identified above and package them into a 
cohesive workflow for processing and analysis. This requires a technology stack that will create the 
links between different tools and the operating environment in which the workflow is executed and 
managed. While there are many different technology services available for workflow development, 
the priority for the SDR will be identifying a technology stack that contains all of the required 
functionality while being reliable, sustainable and cost-effective. 
 

4.1 Selecting a Human-in-the-Loop Workflow Management Systems (WfMS) 
There are many examples in bioinformatics of automated workflows that string together a collection 
of tools and execute a series of steps with no intervention required by a user (Perkel, 2019). A 
Workflow Management System (WfMS) is the software that strings the tools together. It designs, 
executes and monitors a workflow while shielding users from underlying executional complexities. It 
manages code and data access and movement, logging, errors, parameter configurations and data 
provenance (where, when and with what parameters and inputs a task was run) among other tasks 
(Cohen-Boulakia et al., 2017; Deelman et al., 2018). 
 
There are currently over 266 Workflow Management Systems, each with its own strengths and 
weaknesses. Typically, they vary on whether they are focused on either linking tools or linking 
infrastructure layers, whether they are domain-specific of general and who they target as their user-
base and the level of expertise required. It is not necessary, however, to only choose one. Workflow 
management systems can be combined to develop custom solutions.  
 
In addition to these considerations, the SDR has an added layer of complexity because it will require 
human interaction and decision-making at various steps in the process. For example, the workflow 
could execute the steps to get an image to the point where it is ready to be georeferenced, but a 
user may need to select which type of georeferencing algorithm is most appropriate for the label 
based on the locality information within it. This is called a human-in-the-loop (HitL) workflow. 
 
Therefore, the environment within which the workflow is executed must be interactive, providing a 
space in which a user can give commands that then dictate the next steps of the workflow. Similar 
HitL workflows have been developed for other biodiversity projects (Mathew et al., 2014) and there 
are technology services to facilitate this type of interaction, such as OpenRefine which includes 
functionality for recording human interactions so they can be repeated in future runs of the 
workflow.  
 
Galaxy is another WfMS designed specifically for bioinformatics that offers HitL functionality. It has 
been adopted by EOSCLife, a cluster of 13 research infrastructures, to develop the SEEK Platform. 
Galaxy is also used by the IBISBA1.0 project, part of IBISBA-EU.  
 

4.2 Implementing a standardised workflow language for interoperability 
The steps of a workflow (scripts, tools, command-line tools and workflows themselves) are linked 
together and executed by the workflow engine within the WfMS. Linking all of these disparate 
interfaces, scripts, methods and datasets together requires each step to be in the same language so 
that they can communicate consistently with each other.  
 
Different WfMS typically have different language requirements and protocols and limit 
interoperability. Several attempts have been made to standardise workflow descriptions and enable 

https://s.apache.org/existing-workflow-systems
https://openrefine.org/
https://www.eosc-life.eu/
https://cordis.europa.eu/project/id/730976
https://www.ibisba.eu/
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workflow interoperability between different systems in order to support the long-term preservation 
of workflows that may outlive any specific WfMS. The Workflow Description Language and the 
Common Workflow Language (CWL) (Amstutz et al., 2016; Khan et al., 2019) are recent community 
efforts to implement a standard language. OpenAPI and the use of APIs for task execution (e.g. 
GA4GH Task Execution API and GA4GH Workflow Execution API) is contributing to standardised 
communication between interfaces. The EDAM ontology is another step towards standardising 
descriptions of the inputs and outputs between bioinformatics tools. 
 
Of these contributions, the Common Workflow Language is the best open standard for compiling 
workflows and describing how to run the command line tools inside them in a way that makes them 
portable and scalable. It is a WfMS-agnostic common language that developers can use to better 
document workflows and assist with workflow portability and interoperability when working 
between different systems. The current CWL Standard (v1.1) provides authoritative documentation 
of the execution of CWL documents. 
 
CWL is recommended for the SDR. ELIXIR, a sister ESFRI to DISSCo, has invested in the support of 
CWL and it is used by the EU’s BioExcel2 Centre of Excellence for Biomolecular modelling, by the 
IBISBA ESFRI for Industrial Biotechnology and by the EOSCLife Cluster project. This strong community 
and financial support for the development of CWL is indicative of its longevity and anticipated 
sustainability for the SDR. 
 

4.3 Assembling the workflow 
Workflows are made up of a collection of metadata and files - test data, example data, validation 
data, design documents, parameter files, parameter setting files, result files, provenance logs, etc 
(Khan 2019). 
 
While the Common Workflow Language is the language in which a workflow is written and 
described, a research object (RO) is a service for packaging the metadata of disparate objects along 
certain standards and conventions so that the packages can be exported and exchanged between 
WfMSs with the necessary detail to be reused and reproduced (Belhajjame 2015). RO-Crate is a 
recently-developed research object that organizes file-based data with its associated metadata in 
both human and machine readable formats along with the ability to include additional WfMS-
specific metadata. The RO-Crate Metadata File contains information about the dataset as a whole 
and, optionally, about some or all of its files. This provides a simple way to, for example, assert the 
authors (e.g. people, organizations) of the workflow or one its files or to capture more complex 
provenance for files such as how they were created. 
 
Along with the CWL and Galaxy, RO-Crate has been adopted by EOSCLife and IBISBA as the service 
for describing and packaging workflows and their related files. Based on this community and 
financial support for these capabilities, a number of WfMSs, including Galaxy, will support CWL and 
ROCrate. 
 

4.4 The Specimen Data Refinery tech stack 
Executing the SDR workflow will require a foundational tech stack and infrastructure for two core 
pieces - a registry and a run platform. 
 
A registry is a library of workflows. All of the tools and steps in the workflow will be comprised of 
smaller sub-steps and sub-workflows that make up the building blocks of the entire engine. These 
building blocks will be housed in a registry built for the SDR. WorkflowHub is a workflow library 
currently under development for EOSCLife and IBISBAHub for IBISBA workflows and is the underlying 

https://software.broadinstitute.org/wdl/
https://github.com/ga4gh/task-execution-schemas/
https://github.com/ga4gh/workflow-execution-schemas
http://edamontology.org/page
https://www.commonwl.org/v1.1/
http://researchobject.org/
https://w3id.org/ro/crate
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platform for both of these. Hubs can also be utilized for the SDR. It will describe and store the SDR 
tools and steps in such a way that they satisfy FAIR principles and so that end users understand the 
workflows data provenance and quality (Goble et al., 2020).  
 
A run platform is the technology stack that will pull these tools, services and processes together. 
Along with a variety of other services, the recommended SDR run platform (Image 3) can utilise 
services like Galaxy, CWL, RO-Crate and Workflow Hub that are currently supported by other ESFRI 
initiatives like EOSCLife and IBISBA. Further research is required to identify the best partners for 
other components like data storage (e.g. AWS).  
 
 

 
Image 3: The recommended workflow technology stack for the SDR 
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Conclusion 

This gap analysis has made apparent which categories of tools and resources have been specifically 
developed for specimen images or can be readily generalised and potentially used. Image 
segmentation, OCR and taxonomic resolution have a broad range of existing and well-tested 
approaches. Other areas such as visual trait extraction or text processing tools to convert “strings to 
things” are lacking. There are some general tools and commercial services which deal with 
contemporary languages but Latin and Greek are commonly encountered in scientific names, in 
diagnostic descriptions (especially botanical descriptions) and as abbreviations on labels such as “cf.” 
(confer). Other potential issues that are yet to be tested or understood in scope are: the frequency 
of co-occurring languages on labels; the frequency of differing co-occurring hands on labels; and 
how challenging the abbreviated technical writing style of labels is compared to natural language 
documents. 
 
Many of the tools and services will require initial or further testing and analysis with training 
datasets that are domain-specific to natural history collections in order to assess their quality and 
accuracy. For example, BGM recently undertook an image recognition pilot with Google Vision to 
extract label information but the results have yet to be analysed for accuracy (ICEDIG D4.4, 
forthcoming). Transkribus, a handwriting recognition tool capable of deep learning on new 
handwriting, has undergone one test with herbarium sheets but would need to undergo more 
rigorous testing (Haston et al., 2015). Named entity recognition tools like spaCy will need to be 
tested specifically with natural history collection labels.  
 
While there are a broad selection of taxonomic name resolution tools and services, many of which 
are incorporated into GBIF’s name backbone (GBIF Secretariat, 2019), there are still conflicts and 
ambiguities that make it hard for end users. This includes limited adoption of synonyms recorded in 
Catalogue of Life being distinguished by other services  
 
We expect to develop training datasets for the following components of the SDR workflow: 

• Image segmentation 

• Image recognition 

• Feature analysis 

• Trait extraction 

• Condition checking 

• Species identification 

• Atomisation, validation and classification 

• Person and geographic resolution 

 
However, the development of ground-truth training data sets requires considerable time and 
resources (Dillen, 2019). GBIF could serve as a general source for training datasets, particularly for 
geographic resolution, but there are many Darwin Core terms that lack consistent community use of 
identifiers. This includes, but is not limited to, the terms covering: people (recordedBy, identifiedBy, 
georeferencedBy), protocols (georeferenceProtocol, measurementMethod, measurementUnit) and 
location data (higherGeographyID, waterBody, island, locality) which make it harder to develop tools 
to resolve strings, fix ambiguities and link data. While the biodiversity and natural history data 
community are discussing how to better implement identifiers, they have yet to reach a consensus. 
There are also verbatim terms in Darwin Core standards, making it difficult for the machine to 
interpret the data. A lack of identifier adoption also causes problems for tracking data provenance, 
an aspect that we have not addressed in this report but is crucial to technical implementation and 
for the required metadata about digital specimens - this includes information about hardware used 

http://rs.tdwg.org/dwc/terms/recordedBy
http://rs.tdwg.org/dwc/terms/identifiedBy
http://rs.tdwg.org/dwc/iri/georeferencedBy
http://rs.tdwg.org/dwc/iri/georeferenceProtocol
http://rs.tdwg.org/dwc/iri/measurementMethod
http://rs.tdwg.org/dwc/iri/measurementUnit
http://rs.tdwg.org/dwc/terms/higherGeographyID
http://rs.tdwg.org/dwc/terms/waterBody
http://rs.tdwg.org/dwc/terms/island
http://rs.tdwg.org/dwc/terms/locality
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and people involved in the process of creating digital specimens. Inconsistent recording and use of 
image metadata by institutes will also be a challenge - the implementation of image metadata in 
DarwinCore is minimal, however there is an extension (Audubon Media Description) but we have yet 
to assess its usage or suitability. 
 
Previous projects to develop toolsets or platforms, like BioGeomancer, have suffered from 
sustainability issues after project funding ceased. Tools and datasets developed in the next phase of 
SDR work should prioritise software sustainability. Considerations for sustainability include making 
use of existing standards, service/tool documentation, and having a maintenance plan - these are 
summarised in detail by the Software Sustainability Institute. In terms of workflow platform 
sustainability, we should use a pre-vetted platform, ideally with hosting support, that makes use of 
existing European investment and prior efforts in training, notably in the ESFRI Cluster EOSCLife and 
the ESFRI IBISBA. 
 
While these complexities and hurdles need to be taken into consideration in developing the SDR, 
this analysis also revealed there is a considerable about of open-source technology available and 
research that has already been conducted into automating these processes. There is significant 
opportunity to take advantage of this research by combining it into a workflow that will greatly 
improve the efficiency and scalability of NH digitisation efforts. 
 

  

https://terms.tdwg.org/wiki/Audubon_Core_Term_List
https://www.software.ac.uk/resources/guides/guides-developers
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Glossary 

Active Contouring: a method of image segmentation that identifies object contours in an image in 
order to detect outlines 

 
AWS: Amazon Website Service 
 
ETL: Extract, transform, load 
 
GBIF: Global Biodiversity Information Facility (https://www.gbif.org/) 
 
Google Vision: a machine learning tool for automated image recognition and categorisation 
(https://cloud.google.com/vision) 
 
Ground truth data: a dataset comprised of information acquired through direct observation rather 
than through inference or automation   
 
Hands: handwritten script attributable to an individual/individuals 
 
HitL: Human-in-the-loop 
 
ICEDIG: Innovation and consolidation for large scale digitisation of natural 
heritage  (https://www.icedig.eu/) 
 
Metadata: a set of data that describes and gives information about other data, such as the file 
format of timestamp of an image or the provenance and processing inputs of a data run 
 
Neural network: a set of algorithms that are designed to recognize patterns and connections 
through training on a dataset (see training dataset) 
 
NLP: natural language processing  
 
OCR: optical character recognition 
 
Reference datasets: data that sets standards to which the fields in other datasets adhere 
 
RO: research object 
 
SDR: Specimen Data Refinery 
 
SEEK: a digital object management and cataloguing platform that underpins the Workflow Hub and 
IBISBAHub. 
 
Thresholding: a method for segmenting an image by converting a colour image to grayscale and 
then filtering out pixels that are above a certain setting on the grayscale - a threshold - and 
maintaining pixels that fall below it 
 
Training datasets: datasets that are used to train a machine learning platform in a particular set of 
capabilities, for example to identify something in an image 
 

https://www.gbif.org/
https://cloud.google.com/vision
https://www.icedig.eu/
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WfMS: Workflow Management System 
 
YOLO V3: the third release of “You only look once”, an tool for detecting images in an object and 
segmenting them 
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Appendix 

 

Aggregated tools, methods and services spreadsheet 
https://docs.google.com/spreadsheets/d/1t_E0PG2kuJ_l4ikWdRFEw6uiOsazKuSES4aZlf_1qCc/edit?u
sp=sharing 
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